Search results for "Atomic system"
showing 4 items of 4 documents
Weak A-frames and weak A-semi-frames
2021
After reviewing the interplay between frames and lower semi-frames, we introduce the notion of lower semi-frame controlled by a densely defined operator $A$ or, for short, a weak lower $A$-semi-frame and we study its properties. In particular, we compare it with that of lower atomic systems, introduced in (GB). We discuss duality properties and we suggest several possible definitions for weak $A$-upper semi-frames. Concrete examples are presented.
Cavity-aided quantum parameter estimation in a bosonic double-well Josephson junction
2014
We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field…
Frames and weak frames for unbounded operators
2020
In 2012 G\u{a}vru\c{t}a introduced the notions of $K$-frame and of atomic system for a linear bounded operator $K$ in a Hilbert space $\mathcal{H}$, in order to decompose its range $\mathcal{R}(K)$ with a frame-like expansion. In this article we revisit these concepts for an unbounded and densely defined operator $A:\mathcal{D}(A)\to\mathcal{H}$ in two different ways. In one case we consider a non-Bessel sequence where the coefficient sequence depends continuously on $f\in\mathcal{D}(A)$ with respect to the norm of $\mathcal{H}$. In the other case we consider a Bessel sequence and the coefficient sequence depends continuously on $f\in\mathcal{D}(A)$ with respect to the graph norm of $A$.
Continuous frames for unbounded operators
2021
Few years ago G\u{a}vru\c{t}a gave the notions of $K$-frame and atomic system for a linear bounded operator $K$ in a Hilbert space $\mathcal{H}$ in order to decompose $\mathcal{R}(K)$, the range of $K$, with a frame-like expansion. These notions are here generalized to the case of a densely defined and possibly unbounded operator on a Hilbert space $A$ in a continuous setting, thus extending what have been done in a previous paper in a discrete framework.